Matemaatiline analüüs

Matemaatiline analüüs
See matemaatika teadusharu katab enda alla diffenrentseerimise ja integreerimise, läbi lõpmatute seeriate.


Missioon

muuda

Selle raamatu eesmärgiks hõlbustada arvutuste õppimist emakeeles. Palun täiendage seal, kus peate seda vajalikuks.

Mis on diferentseerimine?

muuda

Diferentseerimine on tuletise leidmise operatsioon.

Tõusu definitsioon

muuda

Maksimum ja miinimum

muuda

Tuletise definitsioon

muuda

Näide

muuda
 
Funktsioon y = 2*3x^2

Joonesta kõver mis on defineeritud funktsiooniga   ja vali sellel punkt. Me valisime selleks punktiks koha, kus x=4;

Mis on selle punkti tõus?

Seda võib lahendada ka "ebaratsionaalselt", kasutamata diferentseerimist, nagu järgneb, kasutades kalkulaatorit ja väikeseid vahesid all- ja ülalpool antud punktist.:

Kui x=3,999 ,siis y=47,976003

Kui x=4,001 ,siis y=48,024003

Kahe erineva x-i väärtuse vahe on Dx=0,002

Kahe erineva y-i väärtuse vahe on Dy=0,048


ja koefitsient Dy/Dx= kalle = 24 mis on trigomeetriline tangens alfa;, kus alfa("α"); on nurk horisontaalini tangensi joonelt, punktilt kus joonisel x=4

Nüüd kasutades diferentseerimise reegleid (nähtaval allapool) lahendamaks seda probleemi uuesti, funktsiooni   tuletist (ehk ka tõusu), saab kohe määrata olenemata kõvera punktist, arvutades y'=6x.

Meie x on 4, niisiis y'=dy/dx=6 korda 4 = 24. Selleks aga ei läinud vaja kalkulaatorit!

 

See on tuletise definitsioon. Funktsiooni f tuletiseks punktis x0 nimetatakse funktsiooni muudu ja selle argumendi muudu suhte piirväärtust lähenemisel nullile.

Võimalik, et järgnev vajab parandamist

Visuaalne selgitus sellele valemile oleks, et puutuja tõus võrdub lõikaja tõusu piirväärtusega, kui punktide vahe ( ) läheneb nullile.