a 2 + b 2 = c 2 ⇒ c = a 2 + b 2 {\displaystyle a^{2}+b^{2}=c^{2}\Rightarrow c={\sqrt {a^{2}+b^{2}}}} Pythagorase teoreem
S = a b 2 = c h 2 {\displaystyle S={\frac {ab}{2}}={\frac {ch}{2}}}
s i n α = a c = c o s β {\displaystyle sin\alpha ={\frac {a}{c}}=cos\beta }
c o s α = b c = s i n β {\displaystyle cos\alpha ={\frac {b}{c}}=sin\beta }
t a n α = a b {\displaystyle tan\alpha ={\frac {a}{b}}}
α + β = 90 0 a 2 = f ∗ c ; s i n ( 90 0 − α ) = c o s α b 2 = g ∗ c ; c o s ( 90 0 − α ) = s i n α h 2 = f ∗ g ; t a n ( 90 0 − α ) = 1 t a n α {\displaystyle {\begin{matrix}\alpha +\beta =90^{0}\\a^{2}=f*c;&sin(90^{0}-\alpha )=cos\alpha \\b^{2}=g*c;&cos(90^{0}-\alpha )=sin\alpha \\h^{2}=f*g;&tan(90^{0}-\alpha )={\frac {1}{tan\alpha }}\end{matrix}}}
h = d 2 2 − a 2 4 {\displaystyle h={\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}
S r o m b = a ∗ d 2 2 − a 2 4 {\displaystyle S_{romb}=a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}
d 1 = a ∗ d 2 2 − a 2 4 d 2 {\displaystyle d_{1}={\frac {a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}{d_{2}}}}
r = a ∗ d 2 2 − a 2 4 d 2 2 {\displaystyle r={\frac {\frac {a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}{d_{2}}}{2}}}
S r i n g = π ∗ a ∗ d 2 2 − a 2 4 d 2 2 2 {\displaystyle S_{ring}=\pi *{\frac {\frac {a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}{d_{2}}}{2}}^{2}}
x = S r i n g S r o m b ⇒ x = π ∗ a ∗ d 2 2 − a 2 4 d 2 2 2 a ∗ d 2 2 − a 2 4 ⇒ x = π ∗ 4 a 2 ∗ d 2 2 − a 2 4 d 2 2 a ∗ d 2 2 − a 2 4 ⇒ {\displaystyle x={\frac {S_{ring}}{S_{romb}}}\Rightarrow x={\frac {\pi *{\frac {\frac {a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}{d_{2}}}{2}}^{2}}{a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}}\Rightarrow x=\pi *{\frac {4a^{2}*{\frac {d_{2}^{2}-{\frac {a^{2}}{4}}}{d_{2}^{2}}}}{a*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}}\Rightarrow }
⇒ x = 4 π a ( d 2 2 − a 2 4 ) ∗ d 2 2 − a 2 4 d 2 2 ⇒ {\displaystyle \Rightarrow x=4\pi a{\frac {(d_{2}^{2}-{\frac {a^{2}}{4}})*{\sqrt {d_{2}^{2}-{\frac {a^{2}}{4}}}}}{d_{2}^{2}}}\Rightarrow }
⇒ x = ( 4 π a − π a 3 d 2 2 ) d 2 2 + a 2 4 {\displaystyle \Rightarrow x=(4\pi a-{\frac {\pi a^{3}}{d_{2}^{2}}}){\sqrt {d_{2}^{2}+{\frac {a^{2}}{4}}}}}
Vastus: Romb on ringist ( 4 π a − π a 3 d 2 2 ) d 2 2 + a 2 4 {\displaystyle (4\pi a-{\frac {\pi a^{3}}{d_{2}^{2}}}){\sqrt {d_{2}^{2}+{\frac {a^{2}}{4}}}}} korda väiksem.